A variation norm Carleson theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variation Norm Carleson Theorem

By a standard approximation argument it follows that S[f ] may be meaningfully defined as a continuous function in ξ for almost every x whenever f ∈ L and the a priori bound of the theorem continues to hold for such functions. Theorem 1.1 is intimately related to almost everywhere convergence of partial Fourier sums for functions in L[0, 1]. Via a transference principle [12], it is indeed equiv...

متن کامل

A Generalization of the Rudin-carleson Theorem

The purpose of this paper is to prove a common generalization of a theorem due to T. W. Gamelin [3] and a theorem due to Z. Semadeni [5]. Both these results are generalizations of E. Bishop's abstract version of the well-known RudinCarleson theorem [2]. In the following X denotes a compact Hausdorff space, F a closed subset of X and C(A') and C(F) denote the spaces of all complex-valued functio...

متن کامل

Extension of a Theorem of Carleson

Carleson's proof of this theorem involves a difficult covering argument and the consideration of a certain quadratic form (see also [ l ] ) . L. Hörmander later found a proof which appeals to the Marcinkiewicz interpolation theorem and avoids any discussion of quadratic forms. The main difficulty in this approach is to show that a certain sublinear operator is of weak type (1, 1). Here a coveri...

متن کامل

On weighted norm inequalities for the Carleson and Walsh-Carleson operator

We prove L(w) bounds for the Carleson operator C, its lacunary version Clac, and its analogue for the Walsh series W in terms of the Aq constants [w]Aq for 1 q p. In particular, we show that, exactly as for the Hilbert transform, ‖C‖Lp(w) is bounded linearly by [w]Aq for 1 q < p. We also obtain L(w) bounds in terms of [w]Ap , whose sharpness is related to certain conjectures (for instance, of K...

متن کامل

Critical Points for Surface Maps and the Benedicks-carleson Theorem

We give an alternative proof of the Benedicks-Carleson theorem on the existence of strange attractors in Hénon-like maps in the plane. To bypass a huge inductive argument, we introduce an induction-free explicit definition of dynamically critical points. The argument is sufficiently general and in particular applies to the case of non-invertible maps as well. It naturally raises the question of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2012

ISSN: 1435-9855

DOI: 10.4171/jems/307